1er BAC Sciences Mathématiques

Exrcices avec *Corrections*Fonctions et applications

Exercice 1

Soient les fonctions de N dans N définies par les tables suivantes:

X	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
f(x)	2	4	1	3	5	9	10	6	7	8	16	13	15	14	11	12	18	17

X	1	2	3		5	6	7	8	9	10		12	13	14	15	16	17	18
g(x)	2	1	4	1	11	10	17	0	3	6	1	5	9	11	2	4	1	2

X	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
h(x)	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

- a) Indiquer leur domaine de définition.
- b) Parmi ces fonctions lesquelles sont injectives?
- c) Pour chacune de ces fonctions indiquer comment doit être défini le domaine d'arrivée pour que la fonction soit surjective.
- d) Lesquelles de ces fonctions admettent une fonction réciproque? la définir.
- e) Définir fog, gof, foh, hof, hofog et préciser pour chaque fonction son domaine de définition.

Solution

- a) f, g et h sont définis sur $E = \{1; 2;; 17; 18\}.$
- b) f est injective car il n'existe pas deux éléments distincts de $\bf E$ ayant la même image g n'est pas injective car $\bf f(4)=\bf f(11)$

h n'est pas injective car f(1)=f(2).

```
c) f(E)=E
g(E)={0;1;2;3;4;5;6;9;10;11;17}
h(E)={10}.
```

d) f admet une inverse (lire le tableau à l'envers). Les autres ne sont pas injectives.

Ī	X	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	$f^{-1}(x)$	3	1	4	2	5	8	9	10	6	7	15	16	12	14	13	11	18	17

e)fog

X	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
g(x)	2	1	4	1	11	10	17	0	3	6	1	5	9	11	2	4	1	2
f(g(x))	4	2	3	2	16	8	18	non	4	8	3	5	6	15	1	2	3	1
								def										

gof

X	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
f(x)	2	4	1	3	5	9	10	6	7	8	16	13	15	14	11	12	18	17
g(f(x)	1	1	2	4	11	3	6	10	17	0	4	9	2	11	1	5	2	1

foh : $\forall x$, f(h(x)) = f(10) = 8

 $\forall x, hof(x) = 10$

hofog non définie pour x = 8 égal à 10 ailleurs

Exercice 2

Voici 4 fonctions de **R** dans **R**.

- a) Indiquer leur domaine de définition.
- b) Quelles sont celles qui sont injectives? celles qui sont surjectives? celles qui sont bijectives?
- c) Comment peut-on les rendre bijectives?

$$f(x) = x^2 - 4$$

$$g(x) = \frac{1}{x+1}$$

$$h(x) = \sqrt{x^2 + 3}$$

Solution

Pour f:

- a) f est définie quelque soit x, on a donc $D(f) = \mathbf{R}$
- b) On remarque que f(1) = f(-1), f n'est donc pas injective car deux élément distincts (1 et -1) ont la même image .

f n'est pas surjective car les nombres inférieurs à -4 ne sont pas atteints(pour tout $x \in \mathbb{R}$, $x^2 \ge 0$ et $x^2 - 4 \ge -4$).

- f n'étant ni injective, ni surjective f n'est pas bijective.
- c) Pour que la fonction soit bijective il faut que l'équation f(x) = y ait une et une seule solution quelque soit y.

 $x^2 - 4 = y \Leftrightarrow x = \pm \sqrt{y + 4}$. Il faut donc $y + 4 \ge 0$ et que x ne prenne qu'une seule valeur, la positive par exemple.

La restriction de f à l'ensemble de départ [-4; +∞[et à l'ensemble d'arrivée R⁺ est alors une bijection.

Pour g:

- a) g(x) est défini pour tout $x \neq -1$ donc $D(g) = \mathbb{R} \setminus \{-1\}$.
- b) Etudions les solutions de l'équation $y = \frac{1}{x+1}$ où pour y donné, on cherche x.

$$y = \frac{1}{x+1} \iff x = \frac{1-y}{y}$$
. Pour tout $y \ne 0$, on trouve un et un seul x.

g est donc injective (un y n'a qu'un seul antécédent), mais elle n'est pas surjective (0 n'est pas atteint).

g n'est pas bijective car elle n'est pas surjective.

c) La restriction de g à l'ensemble de départ $Dg = R \{-1\}$, et à l'ensemble d'arrivée $\mathbb{R}\setminus\{0\}.$ Est bien une bijection.

Pour h: (éléments de réponse)

- $a)D(h) = \mathbf{R}$
- b)h n'est ni injective ni surjective ni bijective
- c)La restriction de h à l'ensemble de départ \mathbf{R}^+ et à l'ensemble d'arrivée $[\sqrt{3} \ ; +\infty[$ est une bijection.

Exercice3

Q désigne une quantité produite, K le capital mobilisé et L le travail utilisé.

La fonction de production est définie par $Q = f(K, L) = K^{1/2}L^{1/4}$

1) On considère O comme fonction de la seule variable K, (L étant considéré comme un paramètre fixé).

Quelle est sa fonction réciproque. (Comment le capital varie-t-il en fonction de la production ?)

2) On considère Q comme fonction de la seule variable L, (K étant considéré comme un paramètre fixé).

Quelle est sa fonction réciproque. (Comment le travail varie-t-il en fonction de la production ?)

Solution

Eléments de réponse

- 1) $Q = K^{1/2}L^{1/4} = g(K)$, L est alors un paramètre. On a $K^{1/2} = Q/L^{1/4}$ et $K = Q^2L^{-1/2}$. Donc $K = g^{-1}(Q) = Q^2L^{-1/2}$.
- 2) Q = h(L) avec K paramètre. On a donc $L = h^{-1}(Q) = Q^4 K^{-2}$.

Exercice4: Déterminer les ensembles de définition des fonctions suivantes.

1)
$$x \to \frac{x^2 + 2}{2x^2 - 3x + 1}$$
 2) $x \to \sqrt{2x^2 - 3x + 1}$ 3) $x \to \sqrt{\frac{2x - 1}{x + 1}}$
4) $x \to \frac{\sqrt{2x - 1}}{\sqrt{x + 1}}$ 5) $x \to \ln \frac{2x^2 - 3x + 1}{2 - x}$ 6) $x \to (2x - 1)^m$

$$2) x \rightarrow \sqrt{2x^2 - 3x + 1}$$

3)
$$x \rightarrow \sqrt{\frac{2x-1}{x+1}}$$

$$4) \ x \rightarrow \frac{\sqrt{2x-1}}{\sqrt{x+1}}$$

5)
$$x \to \ln \frac{2x^2 - 3x + 1}{2 - x}$$

6)
$$x \rightarrow (2x-1)^m m \in \mathbf{Z}$$

Solution

1) Une fonction rationnelle (quotient de deux polynômes) est définie si et seulement si son dénominateur est non nul. Donc $f: x \to \frac{x^2+2}{2x^2-3x+1}$ est définie pour les réels x tels que $2x^2$ -

$$3x + 1 \neq 0$$
. Or $2x^2 - 3x + 1 = (x - 1)(2x - 1)$, et $D(f) = \mathbb{R} \setminus \{\frac{1}{2} ; 1\}$.

- 2) Un radical est défini si et seulement si l'expression qui se trouve sous le radical est définie et positive ou nulle. Et si $f: x \to \sqrt{2x^2 3x + 1}$, f est définie pour les réels x tels que $2x^2 3x + 1 \ge 0$. Or $2x^2 3x + 1 = (x 1)(2x 1)$, donc $D(f) =]-\infty$; $\frac{1}{2}] \cup [1; +\infty[$.
- 3) Si $f: x \to \sqrt{\frac{2x-1}{x+1}}$, f est définie si et seulement si $\frac{2x-1}{x+1}$ est définie et positive.
- Or $\frac{2x-1}{x+1}$ a le même signe que (2x-1)(x+1) et est définie pour $x \ne -1$.

D'où D(f) =]-\infty; -1[
$$\cup [\frac{1}{2}; +\infty[$$
.

- 4) Si $f: x \to \frac{\sqrt{2x-1}}{\sqrt{x+1}}$, f est définie si et seulement si $2x-1 \ge 0$ et x+1>0. D'où $D(f) = [\frac{1}{2}; +\infty[$.
- 5) $x \to \ln x$ est définie sur]0; $+\infty$ [, donc si $f: x \to \ln \frac{2x^2 3x + 1}{2 x}$, f est définie pour les réels x tels que $\frac{2x^2 3x + 1}{2 x}$ est définie et strictement positive.

Soit $x \ne 2$ et $\frac{2x^2 - 3x + 1}{2 - x} > 0$. Pour éviter de se tromper, on peut faire un tableau :

X	-∞ -1/	2	1 2	+∞
$2x^2 - 3x + 1$	+	•	+	+
2 - x	+	+	+	-
$\frac{2x^2-3x+1}{2-x}$	+	-	+	-

D'où D(f) =]-\infty;
$$\frac{1}{2}[\cup]1$$
; 2[.

6) Si m = 0, pour x
$$\neq \frac{1}{2} (2x - 1)^m = 1$$
, et $(2x - 1)^m$ n'est pas défini si x = 0.
Donc si f : x $\rightarrow (2x - 1)^m$, D(f) = \mathbb{R}^* .

Si m > 0, f est définie sur \mathbf{R} .

Si m < 0, -m > 0 et
$$f(x) = \frac{1}{(2x-1)^m}$$
 et f est définie sur $\mathbb{R} \setminus \{\frac{1}{2}\}$.

7) Par définition $x^x = \exp(x \ln x)$. $x \to \exp x$ est définie sur \mathbf{R} et $x \to \ln x$ est définie sur]0; $+\infty[$. Donc si $f: x \to x^x$, D(f) =]0; $+\infty[$.

Exercice 5 : Soit f la fonction de **R** dans **R** définie par f(x) = 2|x - 1| + |2x + 1| - |x|.

- 1) Calculer f(0), $f(-\frac{2}{3})$ et $f(\frac{4}{3})$. f est-elle injective ?
- 2) Exprimer f(x) sans les valeurs absolues suivant les valeurs de x (on rappelle que |A(x)| = A(x) si $A(x) \ge 0$ et |A(x)| = -A(x) si $A(x) \le 0$). On pourra établir les résultats à l'aide d'un tableau.
 - 3) Faire une représentation graphique de f.
 - 4) Déterminer Im(f). Trouver le ou les antécédents de 5. f est-elle surjective ?
 - 5) Déterminer **A** et **B** tels que f soit une bijection de **A** dans **B**. Déterminer alors f⁻¹.

Solution

1)
$$f(0) = 2|-1| + |1| - |0| = 3$$

 $f(-\frac{2}{3}) = 2|-\frac{5}{3}| + |-\frac{1}{3}| - |-\frac{2}{3}| = 3$
 $f(\frac{4}{3}) = 2|\frac{1}{3}| + |\frac{11}{3}| - |\frac{4}{3}| = 3$.

 $0, -\frac{2}{3}$ et $\frac{4}{3}$ ont même image par f, f n'est donc pas injective.

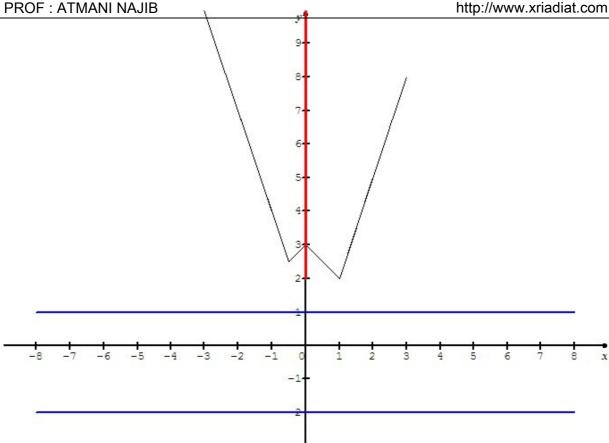
2)
$$|x - 1| = x - 1$$
 si $x \ge 1$ et $|x - 1| = -x + 1$ si $x \le 1$
 $|2x + 1| = 2x + 1$ si $x \ge -\frac{1}{2}$ et $|2x + 1| = -2x - 1$ si $x \le -\frac{1}{2}$

 $|x| = x \text{ si } x \ge 0 \text{ et } |x| = x \text{ si } x \le 0, \text{ d'où le tableau}$:

X	-∞ -1	/2 0		
x-1	-x + 1	-x + 1	-x + 1	x - 1
2x + 1	-2x - 1	2x + 1	2x + 1	2x + 1
lxl	-X	-X	X	X
2 x - 1 + 2x + 1 - x	-3x + 1	x + 3	-x + 3	3x - 1

Sur
$$]-\infty$$
; $-\frac{1}{2}]$, $f(x) = -3x + 1$,
Sur $[-\frac{1}{2}; 0]$, $f(x) = x + 3$;
Sur $[0; 1]$, $f(x) = -x + 3$,
Sur $[1; +\infty[$, $f(x) = 3x - 1$.

3)



4) En utilisant la représentation graphique de f, on constate que Im(f) = [2 ; +∞[(rougr sur le dessin). D'autre part on remarque que 5 a deux antécédents $x_1 \in]-\infty$; $-\frac{1}{2}$] et $x_2 \in [1; +\infty[$. Donc x_1 vérifie $-3x_1 + 1 = 5$, et $x_1 = -2$. De même x_2 vérifie $3x_2 - 1 = 5$, soit $x_2 = 2$. Les deux antécédents de 5 sont donc -2 et 2.

Toujours en utilisant la représentation graphique de f, on remarque que tout réel y de]-∞; 2[n'a pas d'antécédent (parallèle à (Ox) en bleu sur le dessin). f n'est donc pas surjective sur **R**.

5) En observant C(f), on peut affirmer que f est une bijection de $A =]-\infty$; $-\frac{1}{2}$] dans $\mathbf{B} = \begin{bmatrix} \frac{5}{2} \end{bmatrix}$; $+\infty$ [par exemple.

Si on choisit $A =]-\infty$; $-\frac{1}{2}$] et $B = [\frac{5}{2}$; $+\infty[$, f(x) = -3x + 1. Or si y = -3x + 1, $x = -\frac{1}{3}y + \frac{1}{3}$, d'où $f^{1}(y) = -\frac{1}{3}y + \frac{1}{3}$ ou $f^{1}(x) = -\frac{1}{3}x + \frac{1}{3}$.

Si on choisit $\mathbf{A} = [1 ; +\infty[$ et $\mathbf{B} = [2 ; +\infty[, f(x) = 3x - 1, f^{-1}(x) = \frac{1}{3}x + \frac{1}{3}]$.

Si on choisit A = [0; 1] et B = [2; 3], f(x) = -x + 3 et $f^{-1}(x) = -x + 3$...etc

Exercice 6 : Soit E(x) la partie entière de x, c'est à dire l'entier immédiatement inférieur ou égal à x.

On a: $E(x) \in \mathbb{N}$ et $E(x) \le x \le E(x) + 1$.

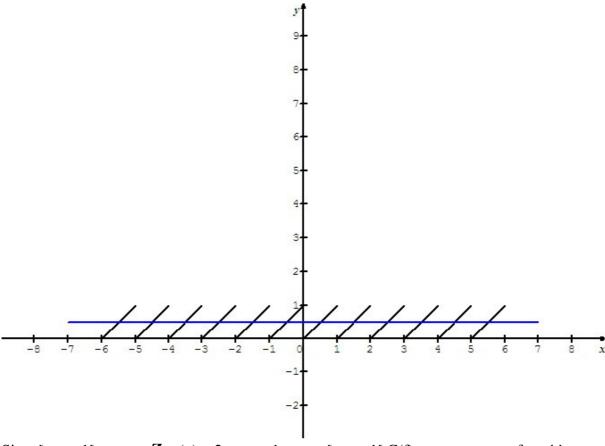
1) Faire la représentation graphique des fonctions f et g définies par f(x) = x - E(x) et g(x) = 2x - E(x-1)

- 2) Ces fonctions sont-elles injectives ? surjectives ?
- 3) Si non, pour chacune des fonctions, déterminer **A** et **B** telle que la fonction soit une bijection de **A** sur **B**.

Solution

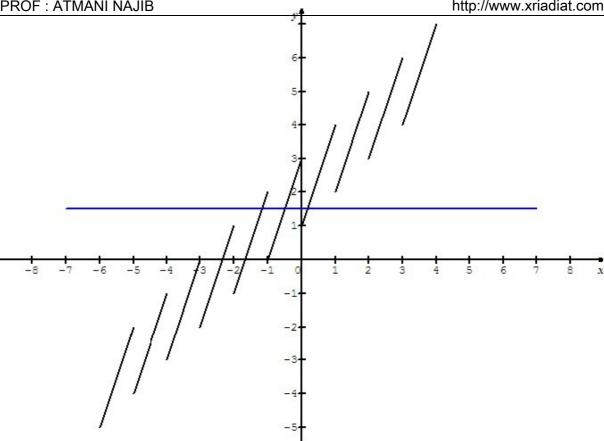
1) Si $x \in [n ; n+1[$ avec $n \in \mathbb{Z}$, f(x) = x - n, et sur [n ; n+1[C(f) est un segment fermé à gauche et ouvert à droite, d'extrémités $A_n(n ; 0)$ et $B_n(n+1 ; 1)$.

On en déduit que sur \mathbf{R} , $0 \le f(x) < 1$. D'où la représentation graphique :



Si $x \in [n ; n+1[$ avec $n \in \mathbb{Z}$, g(x) = 2x - n + 1, et sur [n ; n+1[C(f) est un segment fermé à gauche et ouvert à droite, d'extrémités $C_n(n ; n+1)$ et $B_n(n+1 ; n+3)$.

On en déduit que sur [n ; n+1[, $n+1 \le g(x) < n+3$. D'où la représentation graphique :



2) On a vu que f(n) = 0, tous les entiers ont même image 0, f n'est donc pas injective.

D'autre part $g(\frac{1}{2}) = g(1) = 2$ (plus généralement $g(n + \frac{1}{2}) = g(n + 1) = n + 2$), g n'est pas injective.

On peut aussi le voir graphiquement en remarquant que des droites horizontales coupent plusieurs fois les représentations de f et de g (parallèle à (Ox) en bleu sur les dessins). On a vu dans la question précédente que $0 \le f(x) < 1$, f n'est donc surjective sur **R**. Par contre toute parallèle à l'axe des abscisses coupe C(g), g est donc surjective.

3) f est une bijection de A = [0; 1] dans B = [0; 1] par exemple (on peut prendre pour A tout intervalle de la forme [n; n+1]).

g est une bijection de A = [0; 1] dans B = [1; 3] par exemple (on peut prendre pour A tout intervalle de la forme [n; n+1] et pour **B**, [n+1; n+3]).

Exercice 7 : Soit f : $[-5; 0] \rightarrow \mathbf{R}$

$$x \rightarrow x^2 - 1$$
.

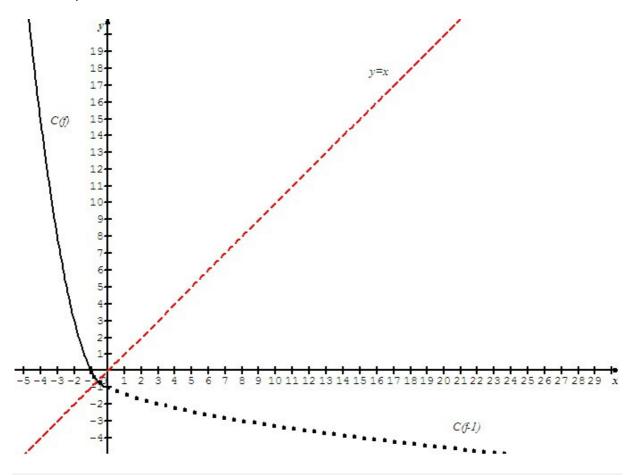
- 1) f est-elle injective? Surjective?
- 2) Déterminer **B** tel que f soit une bijection de [-5; 0] dans **B**. Déterminer alors f¹. Faire les représentations graphiques de f et f¹.

Solution

1) $(f(x_1) = f(x_2)) \Leftrightarrow (x_1^2 - 1 = x_2^2 - 1)$ soit $x_1^2 = x_2^2$. Or deux nombres négatifs (f est définie sur [-5; 0]) ayant même carré sont égaux. f est donc injective de [-5; 0] sur **R**. Si $x \in [-5; 0]$, $f(x) \in [-1; 24]$, f n'est donc pas surjective de [-5; 0] sur **R**.

2) Par contre si $\mathbf{B} = [-1; 24]$ et si $y \in \mathbf{B}$, $y = x^2 - 1$ équivaut à $x^2 = y + 1$.

PROF : ATMANI NAJIB Or $y+1 \in [0\ ; 25]$ et $x=\pm \sqrt{y+1}$ et puisque $x \in [-5\ ; 0], x=-\sqrt{y+1}$ est la seule solution. f est donc bien une bijection de $\mathbf{A}=[-5\ ; 0]$ dans \mathbf{B} et $f^1(y)=-\sqrt{y+1}$ ou $f^1(x)=-\sqrt{x+1}$.



Exercice 8 : Soit f : $x \to \frac{4}{x^2} + 1$. Déterminer A et B tels que f soit une bijection de A sur B. Déterminer alors f^1 .

Solution

Résolvons l'équation $y = \frac{4}{x^2} + 1$ où y est un réel donné et x l'inconnue.

L'équation équivaut à $yx^2 = 4 + x^2$, soit $x^2(y - 1) = 4$. Si y = 1, il n'y a pas de solution (l'équation s'écrit 0 = 4) si $y \ne 1$, on a $x^2 = \frac{4}{y-1}$, ce qui n'est possible que si y > 1

(car $x^2 \ge 0$). Et si y > 1, $x = \pm \sqrt{\frac{4}{y-1}} = \pm \frac{2}{\sqrt{y-1}}$ et il y a deux solutions opposées f n'est donc pas une bijection si $x \in \mathbb{R}^*$ ou si $y \le 1$.

Par contre si $x \in \mathbb{R}^{+*}$ et si y > 1, l'équation n'a qu'une et une seule solution $x = \frac{2}{\sqrt{y-1}}$ et f est une bijection de \mathbb{R}^{+*} dans $]1,+\infty[$.

De plus f admet pour fonction réciproque f^{-1} , fonction de]1, + ∞ [dans \mathbb{R}^{+*} :

$$y \to f^{-1}(y) = \frac{2}{\sqrt{y-1}}$$
. On a aussi $f^{-1}(x) = \frac{2}{\sqrt{x-1}}$.

Exercice 9: Montrer que si f est une bijection croissante (respectivement décroissante) de **A** sur **B**, f⁻¹ est une bijection croissante (respectivement décroissante) de **B** sur **A**.

Solution

On peut le montrer en remarquant que si en repère orthonormée C(f) est la représentation graphique d'une fonction f croissante (resp. décroissante), son symétrique par rapport à la droite d'équation y = x est la représentation graphique d'une fonction croissante (resp. décroissante), or c'est celle de f^{-1} .

Montrons-le autrement.

Supposons que f soit une bijection croissante de l'intervalle $\bf A$ dans l'intervalle $\bf B$, $\bf f^1$ est une bijection de $\bf B$ dans $\bf A$.

Soient x_1 et x_2 deux réels de **B** tels que $x_1 < x_2$.

Supposons que $f^1(x_1) \ge f^1(x_2)$. $f^1(x_1)$ et $f^1(x_2)$ appartiennent à $\bf A$ et puisque $\bf f$ est croissante sur $\bf A$, $f(f^1(x_1)) \ge f(f^1(x_2))$, soit $x_1 \ge x_2$, et c'est impossible puisque $x_1 < x_2$. Donc nécessairement $f^1(x_1) < f^1(x_2)$ et f^1 est croissante de $\bf B$ dans $\bf A$. On fait un raisonnement analogue si $\bf f$ est décroissante.

Exercice 10 : Déterminer gof et fog, ainsi que leur ensemble de définition, dans les deux cas suivants

1)
$$f: x \to \sqrt{x+1}$$
 $g: x \to \sqrt{x^2 - x - 2}$.
2) $f: x \to \frac{x+1}{x-1}$ $g: x \to \frac{2}{x}$

Solution

1) $D(f) = [-1; +\infty[$ et puisque $x^2 - x - 2 = (x+1)(x-2), D(g) =]-\infty; -1] \cup [2; +\infty[$. Pour définir gof(x) = g(f(x)), il faut que $x \in D(f)$ et que $f(x) \in D(g)$. Or pour $x \in D(f)$, $f(x) \in [0; +\infty[$, donc pour que $f(x) \in D(g)$, il faut que $f(x) \in [2; \infty[$, c'est à dire que $\sqrt{x+1} \ge 2$, soit $x+1 \ge 4$ et $x \ge 3$. Si $x \in [3; +\infty[$, $x \in D(f)$, donc

$$D(gof) = [3; +\infty[.$$

Si
$$x \in [3; +\infty[, gof(x) = g(f(x)) = g(\sqrt{x+1}) = \sqrt{(\sqrt{x+1})^2 - \sqrt{x+1} - 2}$$

 $gof(x) = \sqrt{x - \sqrt{x+1} - 1}$

Pour définir fog(x) = f(g(x)), il faut que x \in D(g) et que g(x) \in D(f). Or si x \in D(g), g(x) \in [0 ; +\inc [\subset D(f). Donc D(fog) = D(g) =]-\inc ; -1]\cup [2 ; +\inc [. Si x \in]-\inc ; -1]\cup [2 ; +\inc [, fog(x) = f(\sqrt{x^2 - x - 2}) = \sqrt{\sqrt{x^2 - x - 2} + 1}.

2) Remarquons que $D(f) = \mathbb{R} \setminus \{1\}$ et $D(g) = \mathbb{R} \setminus \{0\}$. Pour définir gof(x) = g(f(x)), il faut que $x \in D(f)$ et que $f(x) \in D(g)$. Or pour $x \in D(f)$, $f(x) \neq 0$ si et seulement si $x \neq -1$. Donc $D(gof) = \mathbb{R} \setminus \{-1; 1\}$.

http://www.xriadiat.com

Pour tout
$$x \in \mathbb{R} \setminus \{-1; 1\}$$
, $gof(x) = g(\frac{x+1}{x-1}) = \frac{2}{\frac{x+1}{x-1}} = \frac{2x-2}{x+1}$.

Pour définir $f \circ g(x) = f(g(x))$, il faut que $x \in D(g)$ et que $g(x) \in D(f)$.

Or si $x \in D(g)$, $g(x) = \frac{2}{x} \neq 1$ si et seulement si $x \neq 2$. D'où $D(f \circ g) = \mathbb{R} \setminus \{0; 2\}$.

Et pour tout
$$x \in \mathbb{R} \setminus \{0; 1\}$$
, $fog(x) = f(\frac{2}{x}) = \frac{\frac{2}{x} + 1}{\frac{2}{x} - 1} = \frac{2 + x}{2 - x}$.

Exercice 11 : Soit $f x \to \frac{2x+1}{x-1}$, calculer $f^4(x) = fofofof(x)$, ainsi que son ensemble de définition.

Solution

 $D(f) = \mathbb{R} \setminus \{1\}$ et $f^2(x) = fof(x)$ est définie si $x \in D(f)$ et si $f(x) \in D(f)$. Donc et $f^2(x)$ est définie si $x \ne 1$ et si $\frac{2x+1}{x-1} \ne 1$ soit $2x+1 \ne x-1$, ou $x \ne -2$.

D'où D(f²) =
$$\mathbb{R} \setminus \{-2; 1\}$$
 et $f²(x) = f(f(x)) = f(\frac{2x+1}{x-1}) = \frac{2(\frac{2x+1}{x-1})+1}{(\frac{2x+1}{x-1})-1} = \frac{5x+1}{x+2}$.

 $f^{3}(x) = f(f^{2}(x))$ est définie si $x \in D(f^{2})$ et si $f^{2}(x) \in D(f)$. $f^{3}(x)$ est définie si $x \neq -2$, $x \neq 1$ et si $\frac{5x + 1}{x + 2}$ $\neq 1$ soit $5x + 1 \neq x + 2$ et $x \neq \frac{1}{4}$. D'où $D(f^{3}) = \mathbb{R} \setminus \{-2; \frac{1}{4}; 1\}$ et

$$f^{3}(x) = f(\frac{5x+1}{x+2}) = \frac{2(\frac{5x+1}{x+2})+1}{(\frac{5x+1}{x+2})-1} = \frac{11x+4}{4x-1}.$$

 $f^4(x) = f(f^3(x))$ est définie si $x \in D(f^3)$ et $f^3(x) \in D(f)$. $f^4(x)$ est donc définie si $x \ne -2$, $x \ne \frac{1}{4}$, $x \ne 1$ et si $\frac{11x + 4}{4x - 1} \ne 1$, soit $11x + 4 \ne 4x - 1$, et $x \ne -\frac{5}{7}$. D'où $D(f^3) = \mathbb{R} \setminus \{-2; -\frac{5}{7}; \frac{1}{4}; 1\}$ et

$$f^{4}(x) = f(\frac{11x+4}{4x-1}) = \frac{2(\frac{11x+4}{4x-1})+1}{(\frac{11x+4}{4x-1})-1} = \frac{26x+7}{7x+5}.$$